Updated February 17, 2022

Using AtScale’s Semantic Layer with Data Science Use Cases

AtScale’s semantic layer allows users to have one single place to define business constructs like KPIs (i.e. time series calculations) and first-class dimensionality/hierarchies (i.e. time, geography, product, customer, etc.). Whether you are on the business intelligence (BI) or data science…

Posted by: Daniel Gray

Updated February 1, 2022

A Business-Oriented Semantic Layer for Your Databricks Lakehouse

A semantic layer strategy lays the foundation for a scalable business intelligence and enterprise AI program and complements the power of modern cloud data platforms.  Key benefits include: Business metrics stay consistent across the organization.  Analysts can access a broader…

Posted by: Anurag Singh

Updated January 21, 2022

How A Semantic Layer simplifies Your Data Architecture

*This post was originally published by the author, Anurag Singh. You can view the original post here. Making data accessible to everyone within an organization is a challenge that most companies face. For example, data scientists generate forecasts and predictions…

Posted by: Anurag Singh

Updated October 28, 2021

The Universal Semantic Layer. More Important than Ever.

There’s been a lot of news lately about semantic layers. Google and Tableau announced their plans to connect Tableau to Looker’s semantic layer. It’s great to see the industry recognize the importance of the semantic layer in the new cloud…

Posted by: Dave Mariani

Updated September 22, 2021

How a Semantic Layer Turns Excel into a Sophisticated BI Platform

Microsoft Excel has been the workhorse analytics tool for generations of business analysts, financial modelers, and data hacks. It delivers the ultimate flexibility to manipulate data, create new metrics with cell calculations, build live visualizations and slice and dice data.…

Posted by: Josh Epstein

Updated September 14, 2021

Building Time Series Analysis on Snowflake with a Semantic Layer

In a recent post, we discussed how a semantic layer helps scale data science and enterprise AI programs. With massive adoption of Snowflake’s cloud data platform, many organizations are shifting analytics and data science workloads to the Snowflake cloud. Leveraging the…

Posted by: Daniel Gray

Updated August 17, 2021

Making Raw Data Analysis-Ready with Dimensional Modeling

Turning raw data into analysis-ready data sets for Business Intelligence (BI) and analytics teams is a challenge for many organizations. While collecting and storing information is easier than ever, delivering data sets that are fully prepped for analysts and decision…

Posted by: Dave Mariani